

A ONE-POT SYNTHESIS OF 4-METHYLPYRANO[3,2-C]QUINOLIN-2,5[6H]-DIONES

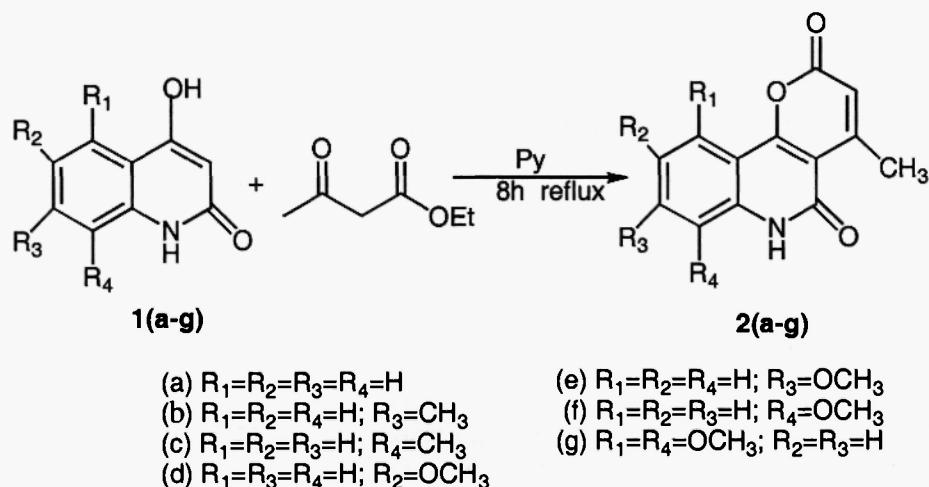
N. Venkatesh Kumar and S.P. Rajendran*

Department of Chemistry, Bharathiar University, Coimbatore-46, Tamil Nadu, India.

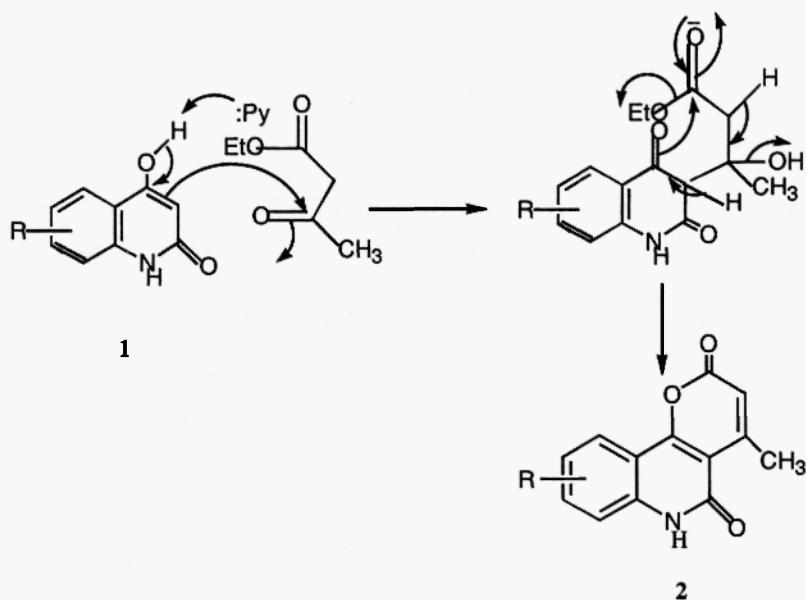
Correspondence to *E-mail* : rajendrantsp@yahoo.com

Abstract: 4-hydroxy-2-quinolone being endowed with both nucleophilic and electrophilic properties furnishes the dimeric quinoline in a base catalyzed self-condensation process. A one step synthesis, starting from 4-hydroxy-2-quinolone with ethyl acetoacetate and pyridine proceeded through the Michael addition, which was followed by cyclization, gave an angular isomer 4-methylpyrano[3,2-c]quinolin-2,5[6H]-dione. The reaction was then extended to synthesize further derivatives of angular pyrano quinolones. Structures of all the products have been established by spectral and elemental analysis data.

Keywords: One pot synthesis, 4-methylpyrano[3,2-c]quinolin-2,5[6H]-diones.


Introduction: Pyranoquinolines constitute the parent ring structure of pyranoquinoline alkaloids, which occur in the plant family Rutaceae. We have recently reported^{1,2,3} the synthesis of a series of 3,5-disubstituted pyrano[2,3-*b*]quinolin-2-ones starting from 2-chloro-3-formyl quinolines and 2-chloro-3-formyl-4-phenyl/methyl quinolines respectively. In continuation of our studies and in view of the pharmacological activities^{4,5} of pyranoquinolines, we herewith report the synthesis of new unreported derivatives of 4-methylpyrano[3,2-c]quinolin-2,5[6H]-dione and its derivatives (Scheme 1).

Experimental: Melting points were determined on a Boetius Microheating table and are uncorrected. IR spectra were recorded on a perkin-Elmer-597 Infrared spectrophotometer as KBr Pellets. ¹H NMR spectra were recorded on a AMX 400 spectrometer in CDCl₃.


The coupling constants (J) were expressed in Hz. Mass spectra were recorded on a Jeol D 300 mass spectrometer. Carlo Erba 106 and Perkin-Elmer model 240B CHN analyzer performed elemental analyses and the values are within the permissible limits ($\pm 0.5\%$).

4-hydroxy-2-quinolones have been prepared by known procedures⁶. The hitherto unknown derivatives of 4-methylpyrano[3,2-c]quinolin-2,5[6H]-dione synthesized were reported in Table 1.

Scheme 1:

Mechanism : Scheme 2 : Probable pathway for the formation of 2

General Procedure: Synthesis of 4-methylpyrano[3,2-c]quinolin-2,5[6H]-diones (2a-g):

A mixture of 4-hydroxy-2-quinolone (0.004 M) along with ethyl acetoacetate (0.004 M) and pyridine (6-8 drops) was refluxed for 8 h in an oil bath at 120-130°C. Excess of ethyl acetoacetate and pyridine was removed by distillation. The reaction mixture was cooled, added to ice-cooled water (50 ml) and acidified with HCl when 4-methylpyrano[3,2-c]quinolin-2,5[6H]-dione separated as yellow precipitate. The precipitated product was then filtered, washed with water, dried, and chromatographed over silica gel. The petrol-ethyl acetate (4:1) elute fractions furnished the pure compound, which was further recrystallized from petrol-chloroform mixture (Table 1). M.p., yield, ir and analytical data of (2a-g) are given in Table 1.

Results and Discussion: The OH group at 4th-position in the 4-hydroxy-2-quinolone activates the nucleophilic carbon at C-3 in the presence of a base and prompts it to react with a Michael type acceptor. Thus 4-hydroxy-2-quinolone⁶ (**1a**) upon refluxing with active methylene compound ethyl acetoacetate in the presence of pyridine for 8 h gave a product in 80 % yield, which melts at 246-248°C. Its IR spectra showed very sharp peaks. The peak at 1715cm⁻¹, was assigned to the pyrone ring. It possesses stronger absorption at 1666cm⁻¹(corresponds to an angular isomer) in the carbonyl region, which is attributable to amide-carbonyl stretching. 2-quinolones possess stronger carbonyl absorption at higher wavelength than 4-quinolones^{7,8}. The PMR spectra showed very sharp signals. The protons at C-7 and C-10 appear as a doublet at δ7.40 and δ7.67 of value J=7.9 Hz and J=8 Hz respectively (Indicates an angular isomer. The C-7 and C-10 protons of linear isomer would appear much downfield than the angular isomer)^{7,8}. The protons at C-8 and C-9 appear as a multiplet at δ7.31-7.36. The proton at position C-3 appears as a singlet at δ6.59. The signal due to methyl protons appears as a singlet at δ2.75. A broad singlet is obtained at δ12.01, which correspond to NH. The Mass spectra also showed intense molecular ion peak at m/e 227. Thus from the above spectral studies the product was confirmed as 4-methylpyrano[3,2-c]quinolin-2,5[6H]-dione (**2a**) an angular isomer. The reaction sequence leading to **2a** was then extended to synthesize compounds (**2b-g**) and similar results were obtained.

Table – 1. Physical and Spectroscopic data of (2a-g)^a:

Compd.	M.p. ⁰ C (Yield %)	Elemental analyses		IR ^b νmax (cm ⁻¹)	¹ H NMR ^c (δ) ppm	MS <i>m/z</i> 70ev (m+)
		Calcul. (%)	Found (%)			
2a	246-248 (80)	C 68.72 H 3.99 N 6.16	C 68.70 H 3.97 N 6.14	1715 1666	δ2.75 (s, 3H,C ₄ -CH ₃); δ6.59(s, 1H,C ₃ -H); δ7.40(d,1H,J=7.9,C ₇ -H); δ7.67(d,1H,J=8,C ₁₀ -H); δ7.31-7.36(m, 2H,C ₈ -H & C ₉ -H); δ12.01(bs,1H,NH)	227
2b	236-238 (70)	C 69.79 H 4.60 N 6.14	C 69.68 H 4.59 N 5.80	1716 1666	δ2.72(s,3H,C ₈ -CH ₃); δ2.75(s,3H,C ₄ -CH ₃); δ6.58(s,1H,C ₃ -H); δ7.38(s,1H,C ₇ -H); δ7.66(d,1H,J=7.8,C ₁₀ -H); δ7.25(d,1H,J=8,C ₉ -H); δ11.72(bs,1H,NH)	241
2c	227-229 (70)	C 69.70 H 4.60 N 5.81	C 69.67 H 4.58 N 5.80	1718 1658	δ2.72(s,3H,C ₇ -CH ₃); δ2.76(s,3H,C ₄ -CH ₃); δ6.61(s,1H,C ₃ -H); δ7.68(d,1H,J=7.2,C ₁₀ -H); δ7.29-7.33(m,2H,C ₈ -H & C ₉ -H); δ11.72(bs,1H,NH)	241
2d	247-249 (75)	C 65.37 H 4.31 N 5.45	C 65.36 H 4.30 N 5.44	1725 1667	δ2.74(s,3H,C ₄ -CH ₃); δ3.78(s,3H,C ₉ -OCH ₃); δ6.58(s,1H,C ₃ -H); δ7.47(d,1H,J=7.4,C ₇ -H); δ7.71(s,1H,C ₁₀ -H); δ7.40(d,1H,J=7.9,C ₈ -H); δ11.75(bs,1H,NH)	257

2e	263-265 (75)	C 65.37 H 4.31 N 5.45	C 65.36 H 4.29 N 5.43	1722 1665	δ 2.75(s,3H,C ₄ -CH ₃); δ 3.77(s,3H,C ₈ -OCH ₃); δ 6.59(s,1H,C ₃ -H); δ 7.49(s,1H, C ₇ -H); δ 7.68(d,1H,J=7.7,C ₁₀ -H); δ 7.41(d,1H,J=7.9,C ₉ -H); δ 11.76(bs,1H,NH)	257
2f	258-260 (70)	C 65.37 H 4.31 N 5.45	C 65.36 H 4.30 N 5.43	1725 1665	δ 2.77(s,3H,C ₄ -CH ₃); δ 3.77(s,3H,C ₇ -OCH ₃); δ 6.59(s,1H,C ₃ -H); δ 7.69(d,1H,J=8.2,C ₁₀ -H); δ 7.32-7.38(m, 2H,C ₈ -H & C ₉ -H); δ 11.72(bs,1H,NH)	257
2g	251-253 (70)	C 62.72 H 4.56 N 4.88	C 62.70 H 4.53 N 4.87	1717 1665	δ 2.76(s,3H,C ₄ -CH ₃); δ 3.76(s,3H,C ₇ -OCH ₃); δ 3.92(s,3H,C ₁₀ -OCH ₃); δ 6.58(s,1H,C ₃ -H); δ 7.38-7.43(m, 2H,C ₈ -H &C ₉ -H); δ 11.74(bs,1H,NH)	287

a) recrystallized from Petrol-Chloroform mixture b) as KBr pellets
 c) as CDCl₃ solvent

The plausible mechanism has been proposed for the formation of 4-methylpyrano[3,2-c]quinolin-2,5[6H]-dione(**2**) in **Scheme-2**. The expected Michael addition was followed by cyclization, involving the nucleophilic oxygen at C-4 and electrophilic carboxyl carbon in the side chain afforded the product **2**, which was isolated after chromatographic purification.

Conclusion: In conclusion, we have demonstrated the synthesis of newer derivatives of angular[3,2-c]pyranoquinolones in one pot method through Michael addition.

Acknowledgements: One of the author (NVK) thank Bharathiar University, Coimbatore for the award of University Research Fellowship, SIF, IISc, Bangalore and IICT, Hyderabad supported the spectral details.

References:

1. N. Venkatesh Kumar, L. Subramani and S.P. Rajendran, *J. Ind.Chem.Soc.* (2003) (in press).
2. N. Venkatesh Kumar and S.P. Rajendran, *Asian.J.Chem.* **Vol.15**, 111 (2003).
3. N. Venkatesh Kumar, N. Sampath Kumar and S.P. Rajendran, *Asian.J.Chem.* (2003) (in press).
4. M. Dean. ed: by L. Zchmeister, "Progress in the chemistry of Natural Products", **Vol.9**, (Verlag Chemic, Weinhein) 235 (1952).
5. H.T. Openshaw, The alkaloids, **Vol, IX**, edited by R.H.F. Manske (Academic press, New york). 223 (1967).
6. C. Balasubramaniam , Ph.D Dissertation, Bharathiar Univertsity., Coimbatore, India.
7. E.A. Clarke and M.F. Grundon, *J.Chem.Soc.* 4190 (1964).
8. Witcop, Patrick and Rosenblum, *J.Amer.Chem.Soc.*, **73**, 2641 (1951)

Received on December 12, 2003.